18,871 research outputs found

    Geometrización del curriculum en la formación del profesorado de matemáticas

    Get PDF
    Esta comunicación es un documento teórico en el que el autor define la geometrización del currículo en la formación docente en matemáticas, cuando a partir de una cuestión sobre que geometría se debe enseñar en la formación docente y las habilidades de la imaginación, la intuición y la visualización puede ser empleado para la innovación de los planes de estudio. Al comprender cómo un proceso geométrico de la utilización de métodos geométricos como un método para entender y representar visualmente los conceptos matemáticos en diversas áreas, ofrece sugerencias a la enseñanza de los números complejos y matrices

    2001-2002 Celebrating the Spirit of America

    Get PDF
    El curso Matemática para Ingeniería es la base de todos los cursos de la línea de matemática para las carreras de ingeniería los mismos que sirven a su vez de soporte para las asignaturas propias de cada especialidad.Sumilla: Ecuaciones e inecuaciones. Operaciones composición inversa y modelación con funciones. Trigonometría Analítica. Identidades trigonométricas. Vectores en el plano. Ecuaciones paramétricas. Números Complejos en forma cartesiana polar y exponencial. Matrices (operaciones básicas inversa determinante). Sistemas lineales (Método de Gauss). Geometría Analítica Plana en coordenadas rectangulares (la recta las secciones cónicas). Sistema coordenado tridimensional y Vectores en el espacio

    Algunas propiedades para matrices que conmutan con su traspuesta

    Get PDF
    the purpose of this article is to present some conditions in the general n X n , and the particular 2×2 and 3×3 cases, that characterize the matrices set Tn = { A ∈ Mn (C) | AAT = AT A}, where Mn (C) denotes the squared matrices set of nth order, C the set of complex numbers and T the transposition operator.el propósito de este artículo es presentar algunas condiciones que caracterizan el conjunto de matrices n X n: Tn = {A ∈ Mn (C) | AAT = ATA }, donde M n (C) denota el conjunto de las matrices cuadradas de orden n, C el conjunto de los números complejos y T el operador de trasposición

    自閉症スペクトラム障害をもつ子どもの歯磨き行動の自立に関する母親の思いと対処

    Get PDF
    El curso Matemática para Ingeniería es la base de todos los cursos de la línea de matemática para las carreras de ingeniería los mismos que sirven a su vez de soporte para las asignaturas propias de cada especialidad.Sumilla: Ecuaciones e inecuaciones. Operaciones composición inversa y modelación con funciones. Trigonometría Analítica. Identidades trigonométricas. Vectores en el plano. Ecuaciones paramétricas. Números Complejos en forma cartesiana polar y exponencial. Matrices (operaciones básicas inversa determinante). Sistemas lineales (Método de Gauss). Geometría Analítica Plana en coordenadas rectangulares (la recta las secciones cónicas). Sistema coordenado tridimensional y Vectores en el espacio

    Estudio experimental y teórico de complejos 1:1 entre óxido nitroso y peróxido de hidrógeno

    Get PDF
    Los complejos moleculares resultan de fundamental importancia como precursores de reacciones químicas y/o fotoquímicas. Es por esta razón que se han denominado a estas especies como "complejos pre-reactivos" y se ha demostrado que los mismos direccionan las reacciones favoreciendo la formación de los productos. La espectroscopia IR de matrices de gases inertes a temperaturas criogénicas constituye una metodología ideal para el estudio de complejos moleculares. Esto se debe a que el aislamiento de una especie en una matriz rígida e inerte disminuye las interacciones intermoleculares y las bajas temperaturas (menores a 15 K) minimizan las componentes rotacionales de los espectros vibracionales. Como consecuencia de estos dos efectos, los espectros IR de matrices presentan absorciones mucho más agudas que los espectros IR en otras fases, permitiendo la diferenciación de las señales debida a un complejo molecular de las correspondientes a los monómeros que lo originan, que en muchos casos se encuentran muy cercanas. En este trabajo se presenta la formación y caracterización vibracional de complejos formados entre el óxido nitroso, N2O, y el peróxido de hidrógeno, H2O2. El óxido nitroso fue preparado por reacción entre NaNO2 y NH3OHCl y aislado y purificado mediante técnicas de vacío. El peróxido de hidrógeno en fase gaseosa es inestable, por lo cual debió ser preparado in-situ. Para ello se sintetizó un aducto sólido 1:1 entre agua oxigenada y urea. Este aducto, relativamente estable a temperatura ambiente, libera H2O2 al ser calentado a aproximadamente 70 ºC. Es importante no superar los 80 ºC, ya que comienza a liberarse también amoníaco por descomposición de la urea. Para la formación del complejo se cargó en un balón una mezcla de N2O:Ar en proporción 1:1000. Esta mezcla se hizo pasar sobre el aducto mantenido a 70 ºC e inmediatamente depositada sobre una ventana transparente a la radiación IR enfriada a aproximadamente 10 K. Una vez formada la matriz, el depósito fue analizado por la medida de espectros FTIR. Las posibles estructuras de complejos moleculares 1:1 N2O:H2O2 se estudiaron por métodos computacionales empleando el modelo B3LYP/6-311++G(d,p). Como análisis preliminar para plantear las estructuras de entrada se calcularon los orbitales de los monómeros, ya que la geometría del complejo corresponde en general a la que surge del máximo solapamiento de los orbitales. A partir de estos análisis se plantearon dos posibles estructuras. Una de ellas en las que la interacción se produce entre un par de electrones libres del átomo de nitrógeno terminal del N2O y el orbital antiligante del enlace O-H. En la segunda estructura el N2O interacciona a través del átomo de oxígeno. Se simularon los espectros vibracionales teóricos de los dos complejos demostrándose que corresponden a mínimos sobre la hipersuperficie de energía potencial. Estos complejos resultaron además más estables que los monómeros aislados. En los espectros IR experimentales de las matrices formadas se identificaron absorciones que pueden asociarse con la formación de los complejos. El estiramiento antisimétrico N=N=O de los complejos se observa a mayores números de ondas que en el monómero, con corrimientos de 8,7 y 7,7 cm-1 respectivamente, mientras que el estiramiento O-H del peróxido de hidrógeno se presenta a menores números de ondas. Estos resultados están de acuerdo con las predicciones teóricas.Universidad Nacional de La Plat

    Estudio experimental y teórico de complejos 1:1 entre óxido nitroso y peróxido de hidrógeno

    Get PDF
    Los complejos moleculares resultan de fundamental importancia como precursores de reacciones químicas y/o fotoquímicas. Es por esta razón que se han denominado a estas especies como "complejos pre-reactivos" y se ha demostrado que los mismos direccionan las reacciones favoreciendo la formación de los productos. La espectroscopia IR de matrices de gases inertes a temperaturas criogénicas constituye una metodología ideal para el estudio de complejos moleculares. Esto se debe a que el aislamiento de una especie en una matriz rígida e inerte disminuye las interacciones intermoleculares y las bajas temperaturas (menores a 15 K) minimizan las componentes rotacionales de los espectros vibracionales. Como consecuencia de estos dos efectos, los espectros IR de matrices presentan absorciones mucho más agudas que los espectros IR en otras fases, permitiendo la diferenciación de las señales debida a un complejo molecular de las correspondientes a los monómeros que lo originan, que en muchos casos se encuentran muy cercanas. En este trabajo se presenta la formación y caracterización vibracional de complejos formados entre el óxido nitroso, N2O, y el peróxido de hidrógeno, H2O2. El óxido nitroso fue preparado por reacción entre NaNO2 y NH3OHCl y aislado y purificado mediante técnicas de vacío. El peróxido de hidrógeno en fase gaseosa es inestable, por lo cual debió ser preparado in-situ. Para ello se sintetizó un aducto sólido 1:1 entre agua oxigenada y urea. Este aducto, relativamente estable a temperatura ambiente, libera H2O2 al ser calentado a aproximadamente 70 ºC. Es importante no superar los 80 ºC, ya que comienza a liberarse también amoníaco por descomposición de la urea. Para la formación del complejo se cargó en un balón una mezcla de N2O:Ar en proporción 1:1000. Esta mezcla se hizo pasar sobre el aducto mantenido a 70 ºC e inmediatamente depositada sobre una ventana transparente a la radiación IR enfriada a aproximadamente 10 K. Una vez formada la matriz, el depósito fue analizado por la medida de espectros FTIR. Las posibles estructuras de complejos moleculares 1:1 N2O:H2O2 se estudiaron por métodos computacionales empleando el modelo B3LYP/6-311++G(d,p). Como análisis preliminar para plantear las estructuras de entrada se calcularon los orbitales de los monómeros, ya que la geometría del complejo corresponde en general a la que surge del máximo solapamiento de los orbitales. A partir de estos análisis se plantearon dos posibles estructuras. Una de ellas en las que la interacción se produce entre un par de electrones libres del átomo de nitrógeno terminal del N2O y el orbital antiligante del enlace O-H. En la segunda estructura el N2O interacciona a través del átomo de oxígeno. Se simularon los espectros vibracionales teóricos de los dos complejos demostrándose que corresponden a mínimos sobre la hipersuperficie de energía potencial. Estos complejos resultaron además más estables que los monómeros aislados. En los espectros IR experimentales de las matrices formadas se identificaron absorciones que pueden asociarse con la formación de los complejos. El estiramiento antisimétrico N=N=O de los complejos se observa a mayores números de ondas que en el monómero, con corrimientos de 8,7 y 7,7 cm-1 respectivamente, mientras que el estiramiento O-H del peróxido de hidrógeno se presenta a menores números de ondas. Estos resultados están de acuerdo con las predicciones teóricas.Universidad Nacional de La Plat

    ESTUDIO EXPERIMENTAL Y TEÓRICO DE COMPLEJOS 1:1 ENTRE ÓXIDO NITROSO Y PERÓXIDO DE HIDRÓGENO

    Get PDF
    Los complejos moleculares resultan de fundamental importancia como precursores de reacciones químicas y/o fotoquímicas. Es por esta razón que se han denominado a estas especies como "complejos pre-reactivos" y se ha demostrado que los mismos direccionan las reacciones favoreciendo la formación de los productos. La espectroscopia IR de matrices de gases inertes a temperaturas criogénicas constituye una metodología ideal para el estudio de complejos moleculares. Esto se debe a que el aislamiento de una especie en una matriz rígida e inerte disminuye las interacciones intermoleculares y las bajas temperaturas (menores a 15 K) minimizan las componentes rotacionales de los espectros vibracionales. Como consecuencia de estos dos efectos, los espectros IR de matrices presentan absorciones mucho más agudas que los espectros IR en otras fases, permitiendo la diferenciación de las señales debida a un complejo molecular de las correspondientes a los monómeros que lo originan, que en muchos casos se encuentran muy cercanas. En este trabajo se presenta la formación y caracterización vibracional de complejos formados entre el óxido nitroso, N2O, y el peróxido de hidrógeno, H2O2. El óxido nitroso fue preparado por reacción entre NaNO2 y NH3OHCl y aislado y purificado mediante técnicas de vacío. El peróxido de hidrógeno en fase gaseosa es inestable, por lo cual debió ser preparado in-situ. Para ello se sintetizó un aducto sólido 1:1 entre agua oxigenada y urea. Este aducto, relativamente estable a temperatura ambiente, libera H2O2 al ser calentado a aproximadamente 70 ºC. Es importante no superar los 80 ºC, ya que comienza a liberarse también amoníaco por descomposición de la urea. Para la formación del complejo se cargó en un balón una mezcla de N2O:Ar en proporción 1:1000. Esta mezcla se hizo pasar sobre el aducto mantenido a 70 ºC e inmediatamente depositada sobre una ventana transparente a la radiación IR enfriada a aproximadamente 10 K. Una vez formada la matriz, el depósito fue analizado por la medida de espectros FTIR. Las posibles estructuras de complejos moleculares 1:1 N2O:H2O2 se estudiaron por métodos computacionales empleando el modelo B3LYP/6-311++G(d,p). Como análisis preliminar para plantear las estructuras de entrada se calcularon los orbitales de los monómeros, ya que la geometría del complejo corresponde en general a la que surge del máximo solapamiento de los orbitales. A partir de estos análisis se plantearon dos posibles estructuras. Una de ellas en las que la interacción se produce entre un par de electrones libres del átomo de nitrógeno terminal del N2O y el orbital antiligante del enlace O-H. En la segunda estructura el N2O interacciona a través del átomo de oxígeno. Se simularon los espectros vibracionales teóricos de los dos complejos demostrándose que corresponden a mínimos sobre la hipersuperficie de energía potencial. Estos complejos resultaron además más estables que los monómeros aislados. En los espectros IR experimentales de las matrices formadas se identificaron absorciones que pueden asociarse con la formación de los complejos. El estiramiento antisimétrico N=N=O de los complejos se observa a mayores números de ondas que en el monómero, con corrimientos de 8,7 y 7,7 cm-1 respectivamente, mientras que el estiramiento O-H del peróxido de hidrógeno se presenta a menores números de ondas. Estos resultados están de acuerdo con las predicciones teóricas

    Estudio experimental y teórico de complejos 1:1 entre óxido nitroso y peróxido de hidrógeno

    Get PDF
    Los complejos moleculares resultan de fundamental importancia como precursores de reacciones químicas y/o fotoquímicas. Es por esta razón que se han denominado a estas especies como "complejos pre-reactivos" y se ha demostrado que los mismos direccionan las reacciones favoreciendo la formación de los productos. La espectroscopia IR de matrices de gases inertes a temperaturas criogénicas constituye una metodología ideal para el estudio de complejos moleculares. Esto se debe a que el aislamiento de una especie en una matriz rígida e inerte disminuye las interacciones intermoleculares y las bajas temperaturas (menores a 15 K) minimizan las componentes rotacionales de los espectros vibracionales. Como consecuencia de estos dos efectos, los espectros IR de matrices presentan absorciones mucho más agudas que los espectros IR en otras fases, permitiendo la diferenciación de las señales debida a un complejo molecular de las correspondientes a los monómeros que lo originan, que en muchos casos se encuentran muy cercanas. En este trabajo se presenta la formación y caracterización vibracional de complejos formados entre el óxido nitroso, N2O, y el peróxido de hidrógeno, H2O2. El óxido nitroso fue preparado por reacción entre NaNO2 y NH3OHCl y aislado y purificado mediante técnicas de vacío. El peróxido de hidrógeno en fase gaseosa es inestable, por lo cual debió ser preparado in-situ. Para ello se sintetizó un aducto sólido 1:1 entre agua oxigenada y urea. Este aducto, relativamente estable a temperatura ambiente, libera H2O2 al ser calentado a aproximadamente 70 ºC. Es importante no superar los 80 ºC, ya que comienza a liberarse también amoníaco por descomposición de la urea. Para la formación del complejo se cargó en un balón una mezcla de N2O:Ar en proporción 1:1000. Esta mezcla se hizo pasar sobre el aducto mantenido a 70 ºC e inmediatamente depositada sobre una ventana transparente a la radiación IR enfriada a aproximadamente 10 K. Una vez formada la matriz, el depósito fue analizado por la medida de espectros FTIR. Las posibles estructuras de complejos moleculares 1:1 N2O:H2O2 se estudiaron por métodos computacionales empleando el modelo B3LYP/6-311++G(d,p). Como análisis preliminar para plantear las estructuras de entrada se calcularon los orbitales de los monómeros, ya que la geometría del complejo corresponde en general a la que surge del máximo solapamiento de los orbitales. A partir de estos análisis se plantearon dos posibles estructuras. Una de ellas en las que la interacción se produce entre un par de electrones libres del átomo de nitrógeno terminal del N2O y el orbital antiligante del enlace O-H. En la segunda estructura el N2O interacciona a través del átomo de oxígeno. Se simularon los espectros vibracionales teóricos de los dos complejos demostrándose que corresponden a mínimos sobre la hipersuperficie de energía potencial. Estos complejos resultaron además más estables que los monómeros aislados. En los espectros IR experimentales de las matrices formadas se identificaron absorciones que pueden asociarse con la formación de los complejos. El estiramiento antisimétrico N=N=O de los complejos se observa a mayores números de ondas que en el monómero, con corrimientos de 8,7 y 7,7 cm-1 respectivamente, mientras que el estiramiento O-H del peróxido de hidrógeno se presenta a menores números de ondas. Estos resultados están de acuerdo con las predicciones teóricas.Universidad Nacional de La Plat

    Números complejos sobre anillos

    Get PDF
    The purpose of this paper is to present the construction of the complex numbers by using the set ℝ × ℝ with some special operations and also to show the representation of this set by using special matrices of × and the corresponding algebraic version ℝ[]⁄〈 + 〉. it was also studied the three previous constructionsbut for the case ℤ × ℤ , prime and determine whether they remain valid or in its defect, determine under which conditions this is true.El propósito de este artículo es presentar laEl propósito de este artículo es presentar laconstrucción de los números complejos usando el conjunto ℝ × ℝcon algunas operaciones especiales y también mostrar larepresentación de este conjunto usando matrices especiales de × y la correspondiente versión algebraica ℝ[]⁄〈 + 〉.También se estudiaron las tres construcciones previas pero parael caso ℤ × ℤ,  primo y determinamos cuales de ellaspermanecen válidas o en su defecto, determinan bajo quécondiciones esto es verdadero
    corecore